MATH CAMP: FALL 2013 HW # 3

- 1. Solve the following equations for x:
 - a. $2e^{6x} = 18$
 - b. $e^{x^2} = 1$
 - c. $2^x = e^5$
 - d. $2^{x-2} = 5$
 - e. $\ln x^2 = 5$
 - f. $\ln x^{5/2} 0.5 \ln x = \ln 25$
- 2. Derive a formula for the amount of time that it takes money to triple in a bank account that pays interest at rate *r* compounded continuously.
- 3. Compute the first and second derivatives for each of the following functions:
 - a. xe^{3x}
 - b. e^{x^2+3x-2}
 - c. $\ln(x^4 + 2)^2$
 - d. $\frac{x}{e^x}$
 - e. $\frac{x}{\ln x}$
 - f. $\frac{\ln x}{x}$
- 4. Suppose a linear supply and demand model has the generic form:

Demand: $q = \beta_1 + \beta_2 p$

Supply: $q = \gamma_1 + \gamma_2 p$

where the parameters β_1 , β_2 , γ_1 , and γ_2 are all positive or negative as may be appropriate for the context.

- a. Write this system of linear equations in matrix form, Ax = b.
- b. Find the generic equilibrium solution values p^* and q^* in terms of the parameters.
- c. Under what conditions will this system <u>have</u> a solution, and a unique solution? This is a mathematical issue.